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Abstract

T'he general problem of  satellite and particle dynamics about a uuiformly rotatin g tri-axial ellipsoid
with corista nt density is formulated. Thestudy of thisproblemcan shed light 011 the dynamics of particles
and satellites when orbiting irregularly shaped bodics suclhi as astero ids. The physical specification of an
ast croidmio deled as a tri- axial cllipsoid can be reduced to two non-dimensiona | shape parameters (the
cceentricities of the tri-axial ellipsoid) and one non-dimensional paramcter which is a function of the body
density, shapcaundrotation rate. All these par arneters may bemeasured 01 inferred from ground-bad
observations. Using th cse three param clers, the rotating cllipsoid may be dassified into “I'ype 1 o1 Type 11
cllipsoids depending on whether or not all synchronous orbits about the body are unstable. This
classification of the ellip soid has significant consequences for the dynamics of bodies in orbits which are
near-synchronous with the asteroid rotation. Asteroids classified as Type 1 have stable motion associated
with near-synch ro nous orbits. Asteroids classified as I'ype 11 have unstable motion associated with
near-synchronous orbits. Families of planar periodic orbits are computed fo1 two specific elipsoids based
on 1 he asteroids Vesta and 15 ros. The stability of these fawmilies are computed and related to thetype
classification of the cllipsoid. Notes are also mnade on the existence of stable and unstable periodic orbits
about the asteroid 1da. Analytic approximations are also Introduced under some assumptions, lcading to  a
simplificd descript 1on of orbit s about a tri-axial cllipso id. Fin ally, a table of parameters and classifications
fora few known asteroids and comets are given.

1 Introduction

L investigating particle and satellite orbits ahout irregularly shaped simall Solar System bodies
such as asteroids and comets, (L herc are a variety of force perturbations which st be accounted
for. These include the solar tide, solar radiation p ressure, cor net outgassing and perturbations duce
to gravitational harmonics. Solar tide perturbations donnnate when fairly far from the body (s ¢ ¢
Itamiltonand Burns, 1991). Radiation pressure forces generally cause simallparticlesto crash 011
the asteroid surface, yet may notaflect larger particles or artificial satcllites to the sarne degree
(sce Hamilton and Burns, 1992). When close to the body the gravitational harinonies and, in the
casc o f comels the outgassing presdomjuate the orbital dynamics. This paper concentrates on
the eftects of the non-spherical shape of the asteroid o1niorbits whichare close to the body.
Traditional studics of satellite motion under gravitational perturbations have usually
focused 011 the planetary case where these effeets are relatively smiall compared to the atiraction of
the central body. When orbiting a simall, non-spheroid body these classical arialyses may no longer
apply, due to the relatively Targe perturbations scen by orbiters. In studying orbiter dynamics
about small bodies it is sometimes convenientto leave the gravitational harmonics formulation



aside and concentrate onspecificimass distributions whichhave closed formn solutions for their
gravitational potentials. This allows the analyst to specify the major shape perturbations of the
central body 1n closed form; rat her than having to specify the tna ny cocflicients needed in a
harmonic expansion of the gravity field. Somestudics have taken advantage of this approach
(Dobrovolskis and Burns, 1980; German and I'riedlander, 1991; Chauvincan et al., 1993). In
Dobrovolskis and Burns, 1980, the attraction of a tri-axial ellipsoid is used in conjunction with a
number of other large perturbations to study ejecta in the special case of I’Hobos and hodies in
similar situations. In German and Friedlander, 1 {)91, somesimiple shapes (tri-axial ellipsoids,
dual-spheres) are used to generale cocflicients in a gravitational field expansion and the short term
dynamics about such bodics are thien investigated. i Chauvincau et al ., 1993, the closed form
gravitational potential of the tri-axial ellipsoid is used to scarch for chaotic orbits about a specific
cllipsoid with a numnber of different rotation rates. Wlhiere comparable, agreement exists between
their study and the current study.

Such an approach has al'so been used inthe study of galactic dynamics (de Zecuw and
Merritt, 1983, Martinet and de Zecuw, 1988, Merrill and de Zecuw, 1983, Mulder and Hoonmeyer,
1984). Generally, such studies usc potentials with non-constant density distributions and
concentrate on the dynamnies of particles within the potential. Nonetheless, there are parallels
between the study of dynamics outside of andinside of potentials; although the parameter spaces
between the study of galactic dynamics and small hody orbiters tend to differ. of specific interest
mthese studies arethe existence of stable periodic orbits within the potential, as the existence of
such orbits indicate possible paths stars may follow.

Should an actual shape of an asteroid be nicasured (1 udson and Ostro, 1994), it is possible
to derive alarionic expansion of the gravity field, assmining a constant density. Thusa closed
form potentialmay be viewed as an ideal ization, lying between simple spherical mmodels and actual
harmonic expausions. The tri-axial ellipsoid maodel is significant, however, as it incorporates the
effect of themajorshape variations and can be specified based or | optical observations alone.

I'his paper presents a genieral formulation of orbiters about uniformly rotating tri-axial
cllipsoids. It is seen that the physical problem may be specified by three non-dimensional
paramecters which inay all be micasured or inferred from ground-based observations. Lists of 1 hese
parameters are givenintheappendix for several asteroids. Thenthedynamics of near-synchronous
orbits about a general ellipsoid ave studied. It is scen that there are two classes of rotating
ellipsoids, one has 2 unstable syrnichironous orbits and 2 stable synchironous orbits (the plancis fall
into this type in general). Thie other class only has unstable synchronous orbits, which is a
departure from the usual situation insolar systemn bodies and occurs for asteroids whichtend to be
morc distorted, less massive or which spin faster. This class of ellipsoids have a stroug instability
associated with ncar-synchronous orbits. It is interesting to notethat the asteroids Iirosandlda
may he classified assuchanellipsoid. Next, fanilies of dircet and retrograde planar periodic orbits
arc computed about ellips oids based on the asteroids Fros and Vest a. These ast eroids are of
different type, as discussed above,andthe evolution of periodic orbit families about themn are
different. Notes on periodic orbits about the asteroid 1da arcalso given. Finally, some analytic
approxiiations are introduced which explain somne of the observed motion in teris of averaged
osculating clements,

2 Model Specification and Derivation

The tri-axial ellipsoid model of a small body is specificd onice the size, shape, density and rotation
rate of thesmallbody is given. Various techniques for sire, shapeandrotation rate determination
from ground based observations are deseribed in Magnusson et al., 1989. In depth explanations of
these and othier techniques can be found in Asteroids 11, 1989, Section 11, hnprovemnents to the

tri-axial ellipsoid shape are also possible (Ostro et al., 1990, Hudson and Ostro, 1994) but are not



considered here. Note that the density of an asteroid cannot be directly measured 1 most cases
and st be inferred by comparison with known bodies (usually the minor planets, sce Millis and
Dunhaim, 1989).

Even with ground observations there is no specific information on the gravity field of the
sinall body. The tri-axial ellipsotd provides a methodology for study which includes the major
cflects of the body’s irregularity, as it incorporates the three major dimensions of the body into the
force potential. Note that this model does not provide a general description of the gravity field of
an asterold, as it has three planes of synnnetry. It is, however, a versatile model as it has a wide
range of possible shapes gencrated by adjusting the shape parameters. Varying these, the body
may be deformed from a sphere Lo a cigar to a pancake.

To speeify the ellipsoid geometrically only the three major axes are needed. Given a
constant density for the asteroid and its shape and size, there arc classical formulac for the
gravitational potential and its first and sccond partials. These formulac all entail evaluating elliptic
iitegrals, for which simple and robust numerical procedures exist (Press et al., 1992, Scction 6.11).

2.1 Physical Characteris .ics

If the total size of a body is @ x b x ¢, where a > b > ¢, then the associated tri-axial cllipsoid has
major semi-axes of a/2x b/2 x ¢/2. Let a = a/2, = b/2 and v = ¢/2. Then the ellipsoid is
specified by its major semi-axes o X # X v, where o > 3 > .

Given a constant density p for the body, its gravitational parameter g is commputed as:

o= \_Mq Gpafy (1
where (5 is the gravitational constant (G'= 6.672 x 107 % cain®g™ Ts™ %) and H_wm:m)\ is the volume of
the ellipsod.

Define a body-fixed coordinate system in the ellipsoid. The & axis lies along the largest
dimension «, the § axis lies along its intermediate ditmension # and the 2 axis lies along s
smallest dimension 7.

I'his analysis assumes that the ellipsoid rotates uniformly about its largest moment of
incrtia, thus the ellipsoid rotates uniforinly about the Z axis. The rotation rate of the ellipsoid is
denoted as w. 1t is possible Lo generalize this model to an ellipsoid with nutation and precession,
but this is not perforimed in this analysis.

2.2  Gravitational Potential

The gravitational potential corresponding to a constant density tri-axial ellipsoid is classically
known as a function of clliptic integrals. There are two forins of the potential, one if the point in
question is in the interior of the ellipsoid and another if the point lies exterior to the ellipsoid.

If in the interior of the ellipsoid, the gravitational potential at a point &, 3, 2 is (MacMillan,
1930, Scctions 32-37):

FU 3p [ du
|4 Y, = - B Y, 2 - 2
(&, 9, 2) 1/ G(@, 9,2 525 (2)
R 7? i 2?
U2 = Ty VN B R 3
G(&, 9,7 u) 07 :._b:-_ " _\i,_ . (3)

Aw) = V(a4 u) (B2 )37 w). 1

Note that V < 0 always.
The generalization of this potential to the exterior of the ellipsoid is performed using Ivory’s
theorem. See MacMillan, 1930, Section 35 for a derivation of this result. Then the gravitational
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potential of an ellipsoid al a point &, §, Z exterior to the body is:

. RITHN . du
Vig,g,2) = - / G(, 9, 25 u)- (5)
) 1 I i) ( )A(“)
A3, 0,5 M3, 9,2)) = 0 (6)

wlicre ¢ and A arc defined as before, The parameter Ais a function of &, 4, 2 arid is solved for
hnplicitly from equation (6) arid defi ues tlie cllipsoid passing thirough the point 2, 3, 2 which is
confocal to the body’s ellipsoid. Fquation (6) is a cubic equation in A and has a niique positive
root A whenever

¢(#, 9,300 > 0 (7)

(when @, ¢, 2 lies outside the ellipsoid), has the root A = 0 when ¢(2, 9, 2;0) = 0 (when 2,9, 2 lic on
the cllipsol d surface), and is noi needed in the iuterior of the ellipsoid (when (&, 7, 2; 0) < 0).
Thus the potential defi ned by equations (5) and (6) is valid for the exterior and interior of the
ellipsoid as long as A £ O whenever in the interior of the constant density cllipsoid.

T'o give the discussion clarity and generality, it is useful to normalize the variables via a time
and length scale. Denote the scale time to be 1/w and the non-dimensional time as 7:

- wl. (8)

Chioose the largest. seini-axis of the ellipsoid, a, to be the length scale and the non-dimensional
space. variables to be 2,y arid 2 where

¥ o ¥ (9)

v o g/o (10)

z = Zfa. (11)
2.3 Kquations of Moti on

The diflerential equations governing the motion of a point mass in a rotating coordinate frame is
given as (Wintner, 1947, Chapter 111):

r- 2y - U,
g4 28 = Uy (12)
Po- U,

where the potential 7 is defined as:

I, . .
U - ;Z(afl 1 y?) - 8V (e, 2) (13)
Vv 5 N(/(a Y, 2;v) dv 14

= - (a Cv)-
4 ), V¥ 75 A(v) (14)
A() = VI 0B )47 ) (15)
22 y? »2
¢layy,ziv) = bt g I 1 (16)
H
6 = - L.

w20 an

The paramcter A > 0 is solved for from ¢(a, 3, 2; A) 2 0 whenever ¢(2,y,2;0) > 0,clse A= (). Also,
the inequalities 1 > 3 >« arc assumed to hold. The notation U, denotes the partial derivative of
the potential /' with resp ect to the variable 2. Note thatthese equations are given ina rotating
coordinate frame, which has an angular rate of unity in the normalized syster n of units adopted.



Any motion in these units is casily converted to dimensional units by applying the
transformations (8) - (11).

The parameter 8 1s a function of the cllipsoid shape, size, density and rotation rate.

5 - AmCrRy (18)

3w?

Note that these are all quantities which may be iferred, to some degree of accuracy, from Farth
bascd obscrvations. The parameter 6 is; eflectively, the ratio of the gravitational acceleration 1o
the centripetal aceeleration acting on a particle at the longest end of the cllipsoid, assuming that
the cllipsoid has all its mass concentrated at the origin. Should the cllipsoid be a sphere, then it is
the true gravitational acceleration to centripetal acceleration ratio on the equator. See the
appendix for a listing of this parameter for some known asteroids and comets. Note that the
density of asteroids and comets is a poorly known quantity in general, thus we have assuimed some
nominal values in the following analysis (generally 3.5 g e #).

2.4  Symmetries in the Equations of Motion

There are a number of symmetries present in these equations; due to the forin of the potential U
IYirst note the three-fold symmetry of U:

J(a,y,2) = U(dae,dydz2). (19)

This holds as U and A are functions of 2%, y* and 2% only.
It terms of the full equations of motion, and the space and ime coordinates, the cquations

are Invariant under the transformations:

(#,y,2,7) x Yy 2T (20)
(a,y,2,7) - (2,-y,2,~ 1) (21)
(#,9,2,7) -> (- a yz,- 1) (22)

These transformations may be composed onto cach other to find additional invariant
transformations.

Another way to view these transformations is as how they act on initial conditions and time.
Motions starting from the following initial condition pairs can be transformed into each other
under the appropriate transformations given above.

A.ﬁcu.CSNS.\.‘,.«:Q«:NEﬂcv - A.ﬁfw\e_y ZoyXoy Yoy~ Nevﬂev Ava
. S , ., L ; ‘
Ab&lw\z_hovbevw\m:ho_ﬂov - AQ&ZV Yoy 2oy Toy Yo, 2oy~ \Nbv AN\_V
Au(:w\oyma:nﬂ.e;\cvwfﬂov -2 A' Loy Yos Zoy Boy~ Yoy~ 2oy - ﬂev ﬁw.wv

The reversal of the time sign indicates that the transformed motion goes backwards in time.

A special subset of these iuitial conditions are those which transform into themselves,
leading to motion which is synmetric about a line in a plane. Should any orbit have two such
symimetries, then i is a periodic orbit (Marchal, 1990, Section 10.6). These are discussed later,

3 Jacobi Encrgy

There is an integral of motion ininediatly apparent in the equations of motion ( 2). T'his resul
from the uniform rotation of the ellipsoid. The statement of this integral is:

1= L (@027 (26)

T- Ue,y,2) = - C (27)
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where thie paramecter (' is the Jacobi constant of the systen, 7"is the kineticenergy of the satellite
in the rotating coordinate frame and U is defined in equation 13, Given a set of it ial condit ions,
the value of thie resultant constant is conscerved during all perio ds of motion. Note that the constant
is conserved even if the particle trajecltory interseets the ellipsoid in the course of 1ts motion.

3.1 Zero-Velocity Surfaces

A briel deseription of the zero-velocity surfaces andtheir interpretation is given. This discussion
has many similarities to the standard discussion of the zero- velocity surfaces inthe restricted
three-body problemn (Moulton, 1914, Chapter VIIT).Note that, by definition,U > 0. Thus if

(" <0, then 7°>0 andthe satellite can never corne to rest in the rotating frar ne. Further, then
there are no a priori bounds 011 where the particle may not travel.

Conversely, should ¢ > 0, th enthere is the possibility that 7' = 0 on somie surface in 2, y, 2
space, calleda surface of zero-velocity, Tlhiese surfaces arcimportant asthey partition the space
imto regions of allowable (7" > ()) andunallowable (7' < 0) motion. of special interest arc any
surfaces which guarantce that the particle is trappedinthe vicinity of the ellipsoid or is bounded
away from the ellipsoid.

As is theusual procedure i such analyses) first consider the zero-velocity surface when
> 0andthen discuss the changes inthese surfaces as (7 decreases towards O. Setting 7' = 0, the
cquationtosolveto find the zero- velocity surfaces is:

32(9?2 1 y%)- §V(e,y,2) = C (28)

Recallthat V{a;, $1,2) < 0. Thennote thatV (e, y,2) >V(0, 0, 0), thus if 46V (0,0,0) >0,
there is only oncsolutionto this equation, a perturbed eylinder of radius
r :\/2(,'»|M/(af,y,z) <V2C. As C ->00, or as z-»:400, thenr - » V2. Motion is allowable
outside of this cylinder only. As (0 decreascs this eylinder nmoves inward.

Wlien (= - 6V (0, 0, 0) anotherzero velocity surface bilurcates at the center of the ellipsoid.
A's (' deercasces furthier this zero- velocity surface expandsand, depending oni the paramecters of the
cllipsoid, will event ually intersect and ther i surround the ellipsoid itself, lcaving space between the
zero velocity surface andihe surface of the ellipsoid. At this poiut, motion is allowable in the space
above the surface of the cllips oid, and suchimotion cannot escape from the vicinity of the ellipsoid.
A's hefore, there is still a zero-velocity surface which separates the space near the ellipsoid from the
space far from the ellipsoid. Thus there is a band surrounding the ellipsoid where motion is not
possible.

As theenergy increases further, these two surfaces will touch at two synnnetric points along
the a-axis, The location of these points may be computed by solving the algebraic equation:

Up( 20,0,0) = 0 (29)
ve 7 0 (30)
Ao a1l (31)

These points correspond to relative equilibrium points in the dynainical system and are called the
saddle equilibrium points. The val ue of energy at these poiuts is denoted by Cy. Vor € decreasing
from (', particles imnay then travel between the space close to the ellipsoid and the space Tar from
the ellipsoid.

As theenergy decrcases further, the zero-velocity surfaces projected inthe -y planc shrink
to two syminetric points along the y axis, found by solving the algebraic equation:

Uy(0,4 %,,0) = O (32)
¥o7 O (33)
A= oyl- L (31)
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Again, these are equilib riwin points and are called the center equilihrium points. The value of
eriergy at these points is denoted by . For decreasi ng O the zero-velocily surfaces th en do not
intersect thea-yplancandonly exist inthe out-of-planc space. As € -, 01, the zero-velocity
surfaces shrink and miove to the points 2= 0,y = 0, 2 = ot 0o, where they disappear when O = ().
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I'igure 1: Zero-Velocity Curves for a 'I'mi-Axial Ellipsoid

Note that these zero-velocity surfaces only have practical application when one considers
dircet orbits about the ellipsoid in inert ial space. Retrograde orbits (in incrtial space) generally
liave 7' >>0 with respeet the the rotating frame, and thus have ¢ <0. Thus, while retrograde
orbits often prove to be quite stable, their €HCrgY is suchi that there is no zero-velocity barrier
between themn and the ellipsoid. This points to deficiencies in using Hill stability as a complete

characterization of stability of motion.

3.2 1ill-Stability Radius

A uscful application of the energy integral is to determine the maximum radius at which a
nominally circular orbit has ancnergy equal to or lessthanthe value of energy at the saddle
cquilibrium points. Inside of this radius Hill stability may no longer exists and thus it is possible
for the initially circular orbit to eventually crash ontothe surface of theellipsoid. outside of this
radius Hill stability exists and provides a guarantee that the particle will never come withinthe
rero velocity curves surrounding the ellipsoid. I'he energy value at the saddle equilibriun point



(with saddle cquilibrivinpointlocationr,) is:
1.
e

2
The radius at which aninitially circular orbit has an energy equal to the energy Cy, denoted as 17,
must be solved for fromtheequation:

2
Co = 217 Z(/f w) V(0,7 0) (36)

This is a non-linear cquation and must he solved for numnerically. Note that the potential is
evaluated along the y-axis as this gives the maximum radius at which aninitially “circular)’ orbit
losesits Hill stability. Also note that the initial velocity is modified to be non-dimensional and is
evaluated in the rot ating coordinate frame. Thevalue of +* is given for some specific asteroid-like
cllipsoids in the appendix.

(= - 8V (rs,0,0) (35)

4 Equilibrium Points and Their Stability

In studying direct orbits about ancllipsoidinaninertial frame, it is of interestio find circular,
synchronous orbits. In the rotating reference frame, these synchronous orbits are equilibriumn
points of the equations of motion. I'or ellipsoids of revolution ab out the equator (o = 8), there are
aninfinity of such poinis. Tor a general tri-axial cllipsoid, there are at most four such points
exterior tothebody.

It is also of interest to commpute the stability of these synchronous orbits. Classical results
for orbits about planct-like ellipsoids reveal that two of these synchironous orbits are unstable and
two arce stable (cite). Wheninvestigating asteroid-or colllct-like cllipsoids, these results arc not
necessarily true. 1t then becor nes possible for all four synchronous orbits to be unst able. This
resull has implications for satellite dynamics abhout an asteroid,

Algebraically, the equilibriuin points are found by finding all solutions to the equations:

Ur(20y Yo, 20) = () (37)
Uy(m oy Yo, 2’0) < (0] (38)
U260, Yo,20) = 0. (39)

I'romiequation (13), U, = 0if andonly if 2 = 0. Thus the problem may be reduced to finding all
solutions of:

. " i(ﬁ_ o B dv ] i 0 (40)
36

(n
y ool y (41)
[ 2 15 (8 a v)A(v)
H(To, Yo [0;A) = 0. (42)
Solutions to these equations are discussed inthe following subscctions. The solution 2 =y = (), at
the center of the ellipsoid, is not discussed.

The stability of thesc equilibrium points is also ariitem of interest, as the phase space
surrounding these points may be characterized once their stability properties are know n. Thie
stability of mmotioninthe vicinity of these points is inferred from a study of the solutions to thie
variational equations expanded about these points. Using such an analysis (Brouwer and
Clemence, 1961, Chapter X), theconditions for the equilibrium points to be stable arc:

Uga lo Uyyle > 0 (43)
1 - l]J'J'IO - Uyylo > () (44)
(4 - Ua.g,ln - Uyylo)2 - 4Ua'.r|koy|o > 0. (45)



The out-of-planc oscillations about these equilibriuim points are stable, as can be noted since the
potential U is convex in the variable z about cacl ) point.

If allthestability conditions aresatisfied, then the resulting motion is aharmonic oscillation
about the equilibrium poin t. This oscillation hastwo fundamental frequencies associated withit.
Bach frequency describes alibration of the particle trajectory about the equilibrium point.

If stability condition (43) is violated, then condition (45) is sat isfied and the resulting motion
in the vicinity of the equilibrium point consists of a stable and unstable hyperbolic manifold and a
harmonic oscillation. Should condition (44) be violated also, asinilar result, applics.

If stability condition (45) is violated, thencondition(43) is satisfied. Then the resulting
motioninthe vicinity of the equilibriuim point consists of astable and unstable spiral,i.c. consists
of ahyperbolic motion multiplicd by arotat ion. In this case, allmotion will iugeneral spiral away
from the equilibrium point.

Now the positi on and stability of cach of the equilibrivin points is investigated in turn.

4 .1 Saddle Equilibrium Points

First consider the solution when a2, #/ 0 and y, = 0. Note that 2, lies along thelongest axis of the
clhipsoid. The equationto solve inthis case, reduces to:

36 [ duv ]
1 - - - (4(i)
2 Ja, (14 v)A(v)
Ao = 2l 1. (47)
Note that thesolutionX,, and hence 2, also, may he expressed by a transcendental equation

involving elliptic fTunctions. We do not use this property explicitly, but instead solve cquation (46),
when necessary, using the implicit function theorem and Newt oniteration. Call these the saddle
cquilibrium points, for reasons which will becotne obvious, and denote their coordinates by o o
andys = (). )

It is interesting to note thiat these equilibrium points are not guaranteed to exist. I the
inequality

36 [
1 < i / - dv (48)
2 Jo (14 A
is violated, thenthesaddle equilibrium points do not exist, cither interior or exterior to the
ellipsoid. Note the following incquality and identity,

T A A -
2Jo (4 v)pr 2y (14 v)A(v)

T'his implies that a necessary condition for the inequality to he viol ated, and for the saddle points
tonot exist, is 6 < 1,

Should inequality (48) be violated, then it is imagined that the ellipsoid would not be
physically stable as a particle placed at the end of the ellipsoid (at = - a) would fly ofl due to
centripetal aceeleration. Otherwise the body must have an internal cohesive foree in addition to
gravity.

To compute the stability of the saddle points, substitute the values z,; and y, into the the
sccond partial derivatives andsimplify to find:

36
Ua'.rls - A()\s) (50)
36 [ du
] s = - = p - N N «
Uyyl. 1 9 //\s (57 + u)A(u) (51)



Giventhat g < 1, thenUyyls <0, as canbeinferred from equation (46). 11 is also clear that
Upals > 0. Thus stability condition (43) is clearly violated while condition (45) is satisfied. The
st atus of condition (44) is not as clear. But, this stability condition dots not change the hasic
instability typce of the saddle points, which is hyperbolic. Thus, any satellite placed at or near
these points will be influenced mostly by the hyperbolie stable and unstable manifolds, and its
general motion will be to depart fromthe vicinity of the point. Also, it is possible to choose initial
conditions in the neighborhood of the saddle points to find periodic orbits (albeit unstable). Note
that the saddle equilibrium points are similar to the Ly, Ly and Ls equilibrium points in the
restricted three-hody problem (Moulton, 1914, Chapter V1I1).

A s scenin Section 3, the saddle points are the bournidary points between regions of allowable
motion close toand far from the ellipsoid. Thus, motion starting close to these points will in
general either be trapped near the ellipsoid or trapped away fromn the ellipsoid. Another way of
st at ing this is tonote that one pair Of each of the point’s stable and unstable manifoldslies close to
the ellipsoid while the other pair lies away from the ellipsoid. Thus, when passing close to these
points in phase space, the final motion of a satellite will be close to or far from the ellipsoid
depending upon which pair of manifolds the satellite is influenced by,

4.2 Center Equilibrium Points

Next consider the solution for 2, = Oandy, 7 (. Recall thatthey, axis lies along the
mtermediate size length of the ellipsoid. The equations to solve for this case reduce to

[ - 36 [~ [111 5
T2 1 1) A@) o
/\o - 3/3 - ,B? (53)

Agaim, the solution for A, and y, may be expressed by a transcendental equation involving elliptic
functions. Call these equilibriuim points the center equilibrium points. Their coordinates arc
denotled as 2. = () and & y.. They areimportant for characterizing the asteroid withrespeet to
satellite motion.

Similar to the saddle points, there are cases when these equilibrium points do not exist. A
necessary condition for these points to not exist is thatthe saddle points not exist. We assume in
general that these equilibrium points exist in the ellipsoids under consideration.

"To compute the stability of these points, substitute the values a. and y, into the the sccond
partial derivatives and simplify to find:

Unde = 1- _36 /“' ) du ”
e 2 /i, (14 v)A(uw) (54)
36
Uple = -0
vl A (55)

Giventhat g < 1, thenU,g|e > (), asinferred from cquation (52). It is also clear that
Uyyle > 0. Thus stability con dition (43) is clearly satisfied. The status of conditions (44) and (45)
arc not as clear, and may or may not he satisfied, depending on the parameters of the cllipsoid:
8, 3, 7.

A fcw notes may be made concerning the order in which conditions (44) and (45) may be
violated. Assuine that the parameter 8is fixed and that the parameters S and+y will be deercased
fromy 3= v = 1 (keeping v < ), thus deforming a sphere into an ellipsoid. Taking equations (54)
and (55) to thelimit for asphere yiclds

ﬂ!»i,l.“qua'TIC = 0 (56)
ﬂ?’iy[r!ll]yy'C = 3 (b7)
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Under these hmits, both condition (44) and (45) arc satisfied. Given this, andthat condition (43)
is satisflicd, it is evident that condition (45) must be violated before condition (44) may be violated
whe n deforming a sphere ito a general ellipsoid. Thus, as a body is progressively deformed from a
sphere, 1t is stability condition (45) that delincat es between whether thie ceut er points are stable or
unstable. If condition (44) hecomes violated subsequ ently, it will not haveas largea qualitative
efleet as it will only pertain to the orientation of the stable anid unstable manifolds of the center
points and Will not affect thenstability type.

For ellipsoids where all thie stability conditions arc satisficd, the center points are stable in
the sense that motions started near themn will oscillate about the center point indefinitely. For
cllipsoids where the stability condition is not satisfied, the center points become complex unstable.
T'hen, any motion started near the center point will spiral away from or towards thecenter point.
As thereare 110 isolating zero- vclocity surfaces associated with the center points, the finalmotion
will heto cither fall onto the ellipsoid or escape from the ellipsoid.

Whether the center points are stable or unstable hasa large influence on the stability of
near-synchronous orbits abhout the ellipsoid. When the center points are stable, motion started in
near synchronous orbits tend to remain bou nded away fromm the ellipsoid, as the region of regular
curves in phase space near the center points makes passage through these curves to the surface of
the ellipsoid diflicult. It is noted in passing that ncar-circular orbits about ellipsoids with stable
center points seem o be well bel iaved n general, with any instabilities acting in longitude only.

The sarne cannot be said when the center points are unstable. Now the phase space around
the center points IS influenced by the unstable spiral manifolds. T'he generic motion under the
influence of these manifolds is to spiral away fromthe center point. It is important to note that
the spiral the satellite will follow tends 10 act in both the angular and radial directions. The
generic motion of asatellite along these unstable manifolds secins to either crash into the ellipsoid
or to sufler repeated close approaches to it. Due to the distorted shape of the ellipsoid, these close
approaches may cause thesatellite to gain hyperbolic speeds and escape the ellipsoid. If the
motion is continued through crashes with the ellipsoid the generic finalmotion associated with the
unstable manifold is a departure from the vicinity of the ellipsoid. Thus, near-synchronous orbits
about ellips oids with unstable center points cann be characteriz ed as being unst able in general. 1 is
not uncommon to observe a near-synchronons, near circular orbit crash ontoanellipsoid (with
unstable center points) withina matter of days,

In this paper ellipsoids with stable center equilibrium points are called T'ype ] ellipsoids,
while those with unstable center equilibrium points are called Type I ellipsoids. It is evident that
the erashing problemn associated with T'ype 11 ellipsoids is related to near synchronous motion
about the ellipsoid. Thus, when orbiting about a T'ype Il ellipsoid, it is in general bestto avoid
near synchironous orbits. Conversely, it will be unlikely to find orbit ing debris in near-synchronous
orbits about Type 11 ellipsoids.

5 Computing Ellipsoid Type

1t is of interest to ch aracterize when an ellipsoid is of T'ype 1 (stable center points) and when it is
of Type Il (unstable center points). In general, this characterization is a function of the three
paramcters: 3, v, §. Given these numbers for any ellipsoid, it is possible to compute stability
condition (45) and check which category the ellipsoid falls into. This condition inay be represented
as a two-dimensional surface inthie three-dimensional space 8, v, 6. Figure (2) presents a
projection of this surface onto the 8 xéplane for values of v: (), 3/2, 8. Givenspecific values of
f#, v and é, thecllipsoid is of T'ypell if it lies bheneath the app ropriate curvein figure (2). Pinally
observe that the curves do not extend all the way to 3= 1, For 4 = 8 the curve stops at a value
of f= ().928. Fory < Bthccurve stops at ariincrcasing value. In general, for all # greater than
these values at the end of the curve, the ellipsoid can only be of T'ype 1. This is intuitively evident
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as any oblatecllipsoid (/2 =1) is definitely of T'ype 1 independent of o, and henee there will in

general be a small jhterval less than 2 = 1 where the Ty pe 1 properly is maintained.
18 T T 1 T T | I T 1
16 ] 7 veB- ]
e B2 -
14 v 0]
12 Type | Ellipsoid
10 -]
8 -
Type 11 Elhipsoid

6 -
4 -
2 \:;7
0 | | | | 1 1 | | 1

0 01 02 03 04 05 06 07 08 0.9 1

Shape Paramecter g3
Figure 2: 6 for a Type I cllipsoid vs g (for vy = 0 -5 f3)

Note that asuflicient condition for an ellipsoid with parameters 8, 4 and é 1o be of Pype 11
is that the corresponding ellipsoid with « = 3 with é held constant, be of T'ype 11, Thisresult is
apparent from figure (2). This sufliciency condition simplifies the computation as tlie two
dimensional surface in the three dimensional space is now collapsed into a one dimensional surface
(a Jine) in the two dimensional space f, 6. The ellipsoid is, iu this case, anellipsoid of revolution.
It is a prolate ellipsoid with ils axis of rotation perpendicularto the axis of symmetry, shnilar to a
cigar lying on a table withits rotation axis perpendicular to the table. There are siinplifications to
the form of the stability condition for this case,

Iirst note the following results for the center equilibrium point, assurning that y= 5 <1.
These results are computed using the propertices of the elliptic integrals.

. 6
Upsle = 3 (] - A(/\c)) (68)
36
Uyle = Q\(A) (59)

Au) - (ﬂz - u) V14 u (60)

Additionally, 1t is now possible to reduce the elliptic integrals to quadratures in terms of known
functions. Thie equation from which we solve for A, is still, however, transcendental.
The condition for stability (equation (45)) now reduces to:

366 6
1 e .- 1
> o (1 200) (o1
sill).ject tothe constraint
T B S U Vil (62)
B RS R S (R uil PV
. 14 ac
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Note that é is a function of g, a and w?. Thus é will decrease if the mass (or density) of the
cllipsoid decreases or if the size or rotation rate increases. These eflects tend to makea Ty pe 1
cllipsoid into a I'ype H ellipsoid.

In a previous pap ¢f (Chauvineau et al., 1993), orbits were investigated about a body with
nornialized shape paramcters a = 1,3 = 1/1/2, 4 = 1/2 and with a varicty of & parameters,

8- 129.76, 32.44,8,11,2.03 corresponding to rotation periods of 40, 20, 10 and b hours. Note that
these parameters are defi ned using our notation. The density of the body was assumedto be

2.5 gem ®. As stated inthat Paper, the ellipsoid with rotation rates of 40,20 and 10 hours hias

st able center equilibrium points and thus are T'ype 1 ellipsoids as discussed here. Wher 1 the
rotation period is 5 lhours, however, the center equilibrium points are unstable and thus the
cllipsoid is a T'ype 11 ellipsoid. From our current. analysis, thisindicates a qualitative diflerence
between the longer period cllipsoids and the shiorter period (5 hour) ellipsoid. The difference being
that the shorter period ellipsoid will have severe instability inthe vieinity of the synchronous
orbits, as was noted in Chauvineau et al., 1993.1t is expected that the longer period ellipsoids will
haveregions of (radially) stable motlion associated withincar-synchronous orbits. Due to diflerences
in parameter space, the analysis carried out inthat paper does not apply directly to the results
discussed here, as that paper concentrated more on slowly rot ating asteroids.

6 Periodic Orbits

Now our discussion] focuses onafew families of periodic orbits comnputed for satellite motionabout
an cllip soid. These results arc allnumcrical and arc computed for only a few specific ellipsoid
shapes and parameters. T'wo classes of planar periodic orh its are discussed, one direct andthe

ot her ret rograde with respeet Lo inert 1al space. Both these families degenerat ¢ into circular orbits
as 3,7 - 1. 1n computing the periodic orbits, the Tamilics are either terminated once an
intersection with the ellipsoid occurs or whenthe continued computation of the famnily becomes too
diflicult.

These orbits all e in the ellipsoid equatorial plane (zz ()). The necar-circular direct and
retrograde orbits have two distinct symimctries, and thu s have a quarter-symnetry in the plane
(similar to H1l’s variation orbit, Wintner, 1947, Chapter V1), 'T'he following pairs of boundary
conditions are used to compute these orbits:

#(lo) = g

y(to) = 0

(o) = 0 (63)
v(to) = o

x(ly) - 0

y(ty) = m

53(11) z a'f] (64)

ulty) =

Should any orbit satisly both of these boundary conditions, then that orbit inay be extended
into a periodic orbit synimetric about both the 2 and y axes. In the following numerical studies we
choose two hasie ellipsoids to investigate, one based on the asteroid Vesta, which may be classified
as a T'ypelasteroid, and the other based onthe asteroid Fros, which may be elassified as a I'ype
Il asteroid, Notes arc also added on periodic orbits about the cllipsoid based o11the asteroid 1da,
which may also be classified as a Typellasteroid.

The stability computat ions of the periodic orbits follow well established procedures for
planar periodic orbits (Iénon, 1965). The actual method used is described in Schieeres, 1992,
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Scctions 6.9.2-6.9.4. Theyinvolve computation of a characteristic quantity a whichimust satisfy
the condition |a| < 1for the orbit to be stable. A similar quantily may be computed which
describes the out- of-plane stability of the orbit. Iiles containing the initial conditions for the
periodic orbits are avail able by request fromn the author.

G.1 Vesla

Vesta may be classified as a T'ype 1 ellipsoid. Sce the appendix for alist of the physical properties
of the asteroid Vesta. Thus, there are two stable equilibrimin points and two unstable equilibrium
points surrounding it. The following computations arc given in normalized units. The lengths are
converted to kilometers via multiplication by 265. The unstable saddle cquilibrium points are
located al:

xs = 1 1.94097 (65)
ot 5565129 (66)
The stable center equilibrium points are located  at:

ve = 4192377 (67)
C. = 5.531994 (68)

Thie minimwun circular orbit radius to cusure Hill stability against crashing onto the cllipsoid is
r*= 2.26 innormalized units.

There are two famnilics of periodic orbits associated with each center equilibrivin point.
Analogous to the periodic orbits associated with the triangle equilibrium pointsinthe restricted
3-body p roblem (Moulton, 1914, Chapter VII1), these two Tamilics imay be distinguished as along
period family and a short period family. There is also a family of unstable periodic orbits
associated with cach saddle equilibrium point. "Jhisfamily is related to the one harmonic
frequency about the equilibriuin point in the lincar approximation.

The family of retrograde periodic orbits is stable for all a,. Note that the Tamily of direet
orbits at Vesta is stable over most of itsrange, except for some small regions of marginal stability
or stnall instability. This strengthens the assertions of the previous section regarding T'ype 1
cllipsoids, as 1t is clearly possible for a satellite to follow astable, direct orbit with altitudes closc
to the ellipsoid surface.
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I'igure (3) shows the periodic orbit familics as lines in the 2, | y,, C space, where 2, iS the
mit jal coordinate along the a-axis, y, is the coordinate along the y-axis where the orbit crosses
perpendicularly and €' is the energy of the orbit Note that the direct orbit splits from an
essentially circular orbit into an orhit with a definite periapsis and apoapsis. The periapsis of the
orbit lies along the y-axis,and crosses this axis perpendicularly. Conversely, the apoapsis lies aloug
the 2-axis and crosses this axis perpendicularly.

From the information on the plot the periodic orbitinay be constructed as follows: givena,,,
Yo - 0 and (7, y, may be computed by assuming that 2, = 0. This completely specifies the initial
conditions for the orbit.

Figure (4) shows samnples of a direct and retrograde periodic orbit. Note that hoth of the
periodic orbits in this plot are stable. Also shown are two of the equilibrium points. Note that the
saddle and center orbits and points have associated mirror images located 011 the other side of the
asterold, not show ninthe figure,

6.2 EKros

The ellipsoid based on the asteroid Frosis a’Fype 11 ellipsoid. A Typ el ellipsoid has four
unstable equilibrium points in a uniforinly rotating reference frame. The parameters used for the
cllipsoid based on Iros are listed in the appendix. Note that, for convenience, the density was
chosen so that 6 = 1. Normalized units arc used for the following computations. T'he lengths are
converted Lo kilor net ers via multiplication by 20. Thie saddle cquilibrium points arc located at:

»y = 41.1926 (69)
(5 - 16965 (70)

The center equilibrivim points are located at:

Y. - 40.92680 (71)
. = 142333 (72)

The minimum circular orbit radius to ensure Hill stability is #* = 2.17 innormnalized units. For
these bodies the center points no longer generate periodic orbits intheir vicinity. This is duc to
the local nature of the phase space about these equilibrium points, as closed orbits cannot be
construc ted mm the lincar systemn close to the unstable center points.

The presentation of the direet and retrograde periodic orbit familics for the ellipsoid based
on Bros are shown in figure (5). The definitions and interpretations of these orbits remains as
hefore. There are some diflerences for these families, however. Most importantly, note that the
direct orbits become unstable at a distance of 1.85 normalized units from the long end of the
cllipsoid (at aradius of 37 ki), and remains so for the remainder of the family, except for the
small regi ons where the family curve passes through an extremum with respect to the energy C.
This falls withinthe hill stability radius of 2.17 normalized units, inplying that the unstable
manifold of the orbil may intersect the ellipsoid, whichi it dots in general. Conversely, as might be
expected, the retrograde orbits are stable throughout the family, even though these orbit s never
have the hill stability. Thus retrograde orbits may be considercd ‘[safe” orhitsinwhichto fly close
to such an asteroid. Note tlicsimilar conclusion arrival atin Chauvincau, et al.,, 1993.

Not obviousin figure (5) is that theline defining the dircet family of periodicorbitsin figure
() terminates as a spiral in the (z,, (') planc and dots notintersect the ellipsoid. The stability
parameter of this family becomes arbitrarily large as the family is continued along this curve.

Infigure (6) are some samples of periodic orbits about the ellipsoid based on Eros. In this
plotthe direct orbit is unstable whilethe retrograde orbit is stable,
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6.3 Ilda

The ellipsoid based onthe asteroid Ida is a Type 1 ellipsoid. Again a T'ype I ellipsoid has four
unstable cquilibrivin points in a uniforinly rotating reference frame. The parameters Used for the
cllipsoid based on 1da are listed inthe appendix. The density was assunied to be 3.5 gein 3. The
normalized units are used for the following computations. The lengths are coriverted to kilometers
via multiplication by 28. T'he unstable saddle equilibriuin points are located at:

x, = :11.2105 (73)
Je = 1.7899 (74)

The vnstable center equilibrium points are located at:

Yo = 10,9719 (75)
. = 1.5366 (76)

The minitmn o circular orbit radius to ensure Hill stability is = 2.14 in normalized units (= 59.9
kin). This establishes the possibility of stable, near circular orbits outside of 61kin. Note thata
satellite of 1da has heen discovered recently (Marsden, 1994). The estimated distance of the
satellite fromldais 100kin.

The dirvect and retrograde periodic orbits may also be computed for this ellipsoid. They are
qualitatively similar to thie Tamilies presented for Iiros. Note thatforldathe direct
doubly-symmetric periodic orbits are stable for all &, greater 1.90 units (53.1ki). Inside of this
limit , these orbits become unstable in general. As for Fros, the retrograde doubly-syn inetric
periodic orbits are stable for all 2.

7 Non-Synchronous Motion

inally some simple results are discussed which apply to satellite motion when not close to
low-order resonances (namely not at a low altitude and not close to a 1:1resonance with the
asteroid rotation rate). This sit uation occurs when the satellite is far from the ellipsoid or is ina
retrograde orbit about the ellipsoid. Inthe first case the ellipsoid will rotate beneath the
spaccerafl with a relat ively large frequency, thus only high-order resonances will exist, and their
strength will be muted by the larger radius, In the second case, the satellite travels in the opposite
scnse of the cllipsoid rotation, destroying resonances in general. In both situations the effects of
the equatorial ellipticity in the gravitational potential tend to average to zero. This leaves the
terms of zero order as the most significant gravitational cflects onthe satellite. This,inturn, is
cquivalent to the satellite being subjjeet to a the field of anoblate spheroid. There is a wealth of
classical results pertainingto orbits about an oblate spheroid. Sec Brouwer, 1959, Garfinkel, 1958
andKozai, 1959 for some of the seminal work performed onithis problem.

7.1 Major Effects of an Oblate Spheroid Model

The primary perturbation relating to an oblate spheroidmodel are the gravitational harmionic
cocllicients of degree 2 and 4 and Of order O, Cygand (Y4p. Given a constant density tri-axial
cllipsoid, these parameters may be computed as (Germanand Fricdlander. 1991 5 note thenissing
factor of 2 in the denominator of their expression for Cyp):

0

T 2 2 9.2
T0az (@187 27) (77)

Cio QSEJM [B (a4 BY) 4 89" 20267 - 8(a” 1 7)o (78)
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The major cffect of these terms is the presence of secular motions inthe node and argument
of periapsis of thie satellite orbit. Fxpressions for these sccular rates can be found in Kozai, 1959;
cquations (27) and (28). Theremaining elements arc constant,on average, although all clements
sufler short period variat jons with attendent non-zero e ans,

These results predict the stability resulis found for the direet periodic orbits far fromthe
ellipsoid and for the retrograde periodic orbits about the ellipsoid. Further, comparisons between
analytic formulac (I{ozal, 1959) and numecrical integrations of satellite orly its about an ellipsoid
show overall qualit at ive agreemient, should the proper assuinptions apply.

7.2 Comparison between Numericaland Analytical Computation

InPlots (7) - (9),nodal regression rates for circular orbits atliros, Vesta and lda arc presented.
Iiach plot compares numerically computed secular nodal rates about the asteroids (modelled using
the app ropriate tri-axial ellipsoid) with analyticly derived secular nodal rates using Kozai’s theory
incorporating the Cyp and Cyo gravitational cocflicientagdim corresponding to the appropriate
tri-axial ellipsoids. See Brouwer, 1959, for a definition of Kozai’s gravity cocflicients. The numerical
comnputation was perfornmed by integrating the app ropriate orbit about the tri-axial cllipsoid for 1
day and computing the precession of the orbit angular momentuin vector over that period.

Note the good agrecinent b etween analytical and numerical results for all retrograde orbits
(7 > 90). The orbits at Fros and Ida (a = 50 km, ¢ = 0 and @ = 100 kin, ¢ = 0 respectively) both
show goad agreement 1 hrougout the ent ire inclination range. This is a funct ion of the orbits being
far ¢ nough from the body for the averaging cflects to exist. Note the poor agrecinent in the Vesta
case for ncar-polarand direct orbits. This is duclo a resonance between the orbit and Vesta’s
rolation rate. The period of a 500 x 500 kin orbit at Vesta is & 5.2 hours, while the rotation period
of Vest ais asstuned to be 5.3 hours. T'hus, the presence of resonance invalidates the app licability of
thic analytical formulac, as is obvious fromfigure (8). Note that for the results tobeapplicable,
the orbits mmust be st able in semi-major axis, eccentricity andinclination. All orbits plotted below
satisfy thisstability.
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Figure 7: Secular Node rates at ¥Frosfora:50kin, ¢ = ()
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8 Conclusion

The rescarchi described in this paper defines the problemn of satellite and particle dynamices about a
tri-axial ellipsoid and arrives atsome elementary results for this problem. All necessary formulac
nceded to comnpute the forees for a satellite orbiting a tri-axial ellipsoid have been presented. 'Fhe
problem has been non- dinensionalized and shown to depend on only three non-dimensional
parameters; two shape parameters and one parameter relating the mass, size androtation rate of
the ellipsoid. Values of these parameters may be in ferred from ground based measurements.

The zero- velocity surfaces of asatellite in orbit abou t the ellipsoid have been defined and
described. Thie application of Hill stability to circular orbits was also discussed, inthe context of a
guarantee against collision with the ellipsoid. All synclhironous circular orbits ahout the cllipsoid
arc Tound as well as the conditions for their existerice. Thestability of these synchronous circular
orbits is discussed and two classes of ellipsoids are defiried accord ing to whether any of the
syrichronous orbits arc stable or not. Sorne specific computations of periodic orbit families for two
represent ative ellipsoids, based onthie asteroids Vesta and EFros, are presented. Additionally, notes
on stable and unstable orbits about the asteorid Ida tire made.

Animportant item discussed in this paper is the existence of {wo typ cs of uniformly rotating
ellipsoids, called herein as Type 1 and Type 11 ellipsoids. Near-synchronous orbits about a Type |
cllipsoid tend to be stable and well behavedin a global senise. Conversely, ncar-synchronous orbits
about a Type 11 cllipsoid tend to be unst able and usually erash onto the ellip soid over very short
time spans (onthe order of days).

The distinction between T'ype | and T'ype 11 ellipsoids was also highlighted by the stability
of the dircet periodic orbit famnily about the Vesta based ellipsoid and the instability of the direct
periodic orbit Tamily about the Fros based ellipsoid. Note that inboth cases the retrograde
periodic orbit familics were stable.

Finally, comparison between simple analytic results for oblate spheroids are compared with
numerical results. Good agrecinent can be found if the orbiter is ina retrograde orbit or if the
orbitis sufliciently distant fromthe asteroid.

Appendix

Following are tables (1) and (2) giving the physical and computed parameters of a few
ast croidsandacomet. The values of these paramncters arc approxinate and arc not necessarily
bascd on the best available data.

Table (1) lists the basic physical dimensions and quantitics associated with cachibody. Note
that all of these quantitics in ay be mcasured or in fered from ground-based obscrvations. Table (2)
contains th - derived quantitics stated in this paper. These include the T'ype of the ellipsoid (1 or
11), thedefining non-dimensional paraimeters ff,"yan(l(‘),t]mlocationof the saddle equilibriuin
point (2), the location of the center equilibrium point (y,.) and the maxiimum radius at which
initially circular orbitsarenot Hill stable (#*). All lengths inthis table are imnorinalized units.
The last two ellipsoids, called Mcan 1 andMean2, were taken from Chauvineauet al., 1993 and
are representative of the ellipsoid studied in that paper.
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Name

Vesta

lda

Eros
Gaspra
Tempel 2
Mean 1

Mcan 2

[4]
(kin)
265
28
2
9.5
8
V21
V21

(k)
250
12
7
G
4.25
11
"

4.25
1/\/2
1/\/2

20 fw
(hiours)
h.3
4.63
5.27
7
8.9
10
|

J

Density o
(g/cm” D) (’)
3.5 .051
3.5 .090
3.2 088
3.5 .072
1.0 .072
2.5 .100
2.5 .100

Cao
()
006
.025
025
015
017
.024
.024

Table 1: Physical parameters for sor e select small bodies

Namnec
Vesta
lda

Iiros
Gaspra
Tempel 2
Mcan 1
Mecan 2

i
0.94
0.43
0.35
0.63
0.53

1/v/2

1//2

N
0.83
0.37
0.35
0.58
0.53
1/2
1/2

8
7.06
111
1.00
5.75
2.07
8.11
2.03

Type
1
11
]
I
11
1
1

Saddle
] 04
1.21
1.19
1.86
1.39
2.07
1.37

Center
1.92
0.97
0.93
1.76
1.22
2.00
1.25

Table 2: Derived quantitic s for some select siall bodies
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2.26
2.14
2,17
2.57
2.19
2.73
2.08
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